Abstract

Abstract. In the present study, the stresses and displacements are analyzed for layered composite arches of various lamination schemes subjected to uniformly loading. The present work is majorly highlighted the effects of transverse normal stress and transverse normal strain using exponential shear and normal deformation theory (ESNDT). Governing equations are derived using Hamilton’s principle with application of Navier’s method subjected to simply supported end conditions. Present theory is free from use of any shear correction factor and it satisfies the zero traction free end boundary condition at the top and bottom surfaces of the layered composite arches. In the present work symmetric and antisymmetric lamination scheme have been studied to obtain the numerical results for four layered composite arches and is validated through results available in prior literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.