Abstract

The problem in which we are interested is the following. Call an additively written group G finitely decomposable if G = Σ Gi is the weak sum of finite groups Gi, Consider the following property.Property P. Each subgroup of G having cardinality less than G is contained in a finitely decomposable direct summand of G.Does Property P imply that G is finitely decomposable? We shall demonstrate that the answer is negative even in the commutative case. Our question is closely related to (1, Problem 5). In (4), an abelian group is called a Fuchs 5-group if every infinite subgroup of the group can be embedded in a direct summand of the same cardinality. The question of whether or not a Fuchs 5-group is in fact a direct sum of countable groups has been open for several years.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.