Abstract

We present a uniform and easy-to-use technique for deciding the equivalence problem for deterministic monadic linear recursive programs. The key idea is to reduce this problem to the well-known group-theoretic problems by revealing an algebraic nature of program computations. We show that the equivalence problem for monadic linear recursive programs over finite and fixed alphabets of basic functions and logical conditions is decidable in polynomial time for the semantics based on the free monoids and free commutative monoids.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.