Abstract

Understanding the historical events that shaped current genomic diversity has applications in historical, biological, and medical research. However, the amount of historical information that can be inferred from genetic data is finite, which leads to an identifiability problem. For example, different historical processes can lead to identical distribution of allele frequencies. This identifiability issue casts a shadow of uncertainty over the results of any study which uses the frequency spectrum to infer past demography. It has been argued that imposing mild ‘reasonableness’ constraints on demographic histories can enable unique reconstruction, at least in an idealized setting where the length of the genome is nearly infinite. Here, we discuss this problem for finite sample size and genome length. Using the diffusion approximation, we obtain bounds on likelihood differences between similar demographic histories, and use them to construct pairs of very different reasonable histories that produce almost-identical frequency distributions. The finite-genome problem therefore remains poorly determined even among reasonable histories. Where fits to few-parameter models produce narrow parameter confidence intervals, large uncertainties lurk hidden by model assumption.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.