Abstract
Non-interference, in transitive or intransitive form, is defined here over unbounded (Place/Transition) Petri nets. The definitions are adaptations of similar, well-accepted definitions introduced earlier in the framework of labelled transition systems. The interpretation of intransitive non-interference which we propose for Petri nets is as follows. A Petri net represents the composition of a controlled and a controller systems, possibly sharing places and transitions. Low transitions represent local actions of the controlled system, high transitions represent local decisions of the controller, and downgrading transitions represent synchronized actions of both components. Intransitive non-interference means the impossibility for the controlled system to follow any local strategy that would force or dodge synchronized actions depending upon the decisions taken by the controller after the last synchronized action. The fact that both language equivalence and bisimulation equivalence are undecidable for unbounded labelled Petri nets might be seen as an indication that non-interference properties based on these equivalences cannot be decided. We prove the opposite, providing results of decidability of non-interference over a representative class of infinite state systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Electronic Proceedings in Theoretical Computer Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.