Abstract

AbstractDetermining the thermal history of the cometary grains captured by the Stardust mission presents a difficult problem. We consider two simplified models for the deceleration of hypervelocity particles captured in aerogel; both models assume a velocity squared drag force. The first model assumes that the mass of the particle remains constant during capture and the second that mass is lost due to ablation of the particle through interactions with the aerogel. It is found that the constant mass model adequately reproduces the track lengths, found from experiments by Hörz et al. in 2008, that impacted aluminium oxide spheres into aerogel at hypervelocities ~6 km s−1.Deceleration in aerogel heats volatile particles such as organic ices to high temperatures greater than 1,000 K, for durations of ~1 μs: more than sufficient to completely ablate the particle. Refractory particles also experience significant heating greater than 2500 K, greater than the particle's melting point, over similar timescales. This suggests that the fragments recovered to Earth by the Stardust mission were considerably altered by hypersonic capture by aerogel, and so limits the amount of information that can be obtained regarding the formation of mineral and organic particles within Kuiper Belt comets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.