Abstract

AbstractPrevious studies have found that the decadal variability of eddy kinetic energy (EKE) in the upstream Kuroshio Extension is negatively correlated with the jet strength, which seems counterintuitive at first glance because linear stability analysis usually suggests that a stronger jet would favor baroclinic instability and thus lead to stronger eddy activities. Using a time-varying energetics diagnostic methodology, namely, the localized multiscale energy and vorticity analysis (MS-EVA), and the MS-EVA-based nonlinear instability theory, this study investigates the physical mechanism responsible for such variations with the state estimate from the Estimating the Circulation and Climate of the Ocean (ECCO), Phase II. For the first time, it is found that the decadal modulation of EKE is mainly controlled by the barotropic instability of the background flow. During the high-EKE state, violent meanderings efficiently induce strong barotropic energy transfer from mean kinetic energy (MKE) to EKE despite the rather weak jet strength. The reverse is true in the low-EKE state. Although the enhanced meander in the high-EKE state also transfers a significant portion of energy from mean available potential energy (MAPE) to eddy available potential energy (EAPE) through baroclinic instability, the EAPE is not efficiently converted to EKE as the two processes are not well correlated at low frequencies revealed in the time-varying energetics. The decadal modulation of barotropic instability is found to be in pace with the North Pacific Gyre Oscillation but with a time lag of approximately 2 years.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call