Abstract

In this paper, we report the dc and noise properties of the gate current in epitaxial Ge p-channel metal oxide field effect transistors (pMOSFETs) with a Si passivated surface. The gate stack consists of HfO2∕SiO2 dielectric with TiN∕TaN metal gate. The observed temperature dependence of the gate current indicates that the dominant charge transport mechanism through the gate dielectric consists of Poole–Frenkel conduction. Gate current 1∕f noise is more than two orders higher in the case of Ge pMOSFETs when compared to reference Si pMOSFETs. Ge outdiffusion into the gate oxide is the suspected cause for the enhanced Poole–Frenkel conduction and the high gate current 1∕f noise in Ge pMOSFETs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.