Abstract

Understanding hippocampal (HC) function, as it is presently known, includes exploring the HC role in episodic memory storage. As pointed out by Teyler and DiScenna in the 1980s, the apparatus needed for recalling a stored episode, and awakening all its components in a coordinated manner, by necessity includes a triggering device able to reach each of the mental entities that must be awakened. In the context of neuronal networks, the triggering device in question takes the form of a large cell assembly, a separate one made for every new episode stored. The present paper deals with the creation and the properties of these cell assemblies ('pointer groups'). To perform the function of episodic memory retrieval, each of these must possess the information capacity (entropy) enabling it to single out an episode and the network connections enabling it to reach all components of it; further, to deal with the unpredictability of the memory items it has to address, it must have its member neurons well distributed through the length of the network (the HC). The requirements imply that the creation of a pointer group must include a randomizing step analogous to 'stirring'. It is argued that many of the known peculiarities of granule cells in the dentate gyrus arise as solutions to the practical problems presented by the creation of the pointer groups and the details of 'stirring', and so do a series of other features of the HC network, some of them only discovered in the last few years.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call