Abstract

This research leads to carrying out the productivity and the efficiency of the carbon nanotubes (CNTs) that have extensive applications in solar collectors. Due to the superior thermal as well as electrical properties, the use of CNTs has an important contribution to the nanotechnology revolution. Therefore, owing to the aforementioned vital points, this investigation intended to put forth the thermophysical properties of both single and multi-walled CNT nanofluids past a stretching surface. Additionally, an electrically conducting nanofluid flow phenomenon enriches due to the inclusion of dissipation (Ohmic heating) and external heat source/sink. The dimensional form of the three-dimensional fluid flow phenomena is transformed to a non-dimensional form with the use of similarity transformation and further numerical procedure is implemented to solve the nonlinear governing equations. The substantial significance of the characterizing parameters is presented briefly via figures and the comparative analysis with the earlier investigation is deployed through the table. However, the main findings of this study are as follows: A significant attenuation in the shear rate is marked for the enhanced inertial drag but it augments for the augmented values of the magnetization; further, particle concentrations of both the CNTs favor accelerating the fluid momentum as well as temperature distribution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call