Abstract

We consider the response of a gas in a microchannel to instantaneous (small-amplitude) non-periodic motion of its boundaries in the normal direction. The problem is formulated for an ideal monatomic gas using the Bhatnagar, Gross, and Krook (BGK) kinetic model, and solved for the entire range of Knudsen (Kn) numbers. Analysis combines analytical (collisionless and continuum-limit) solutions with numerical (low-variance Monte Carlo and linearized BGK) calculations. Gas flow, driven by motion of the boundaries, consists of a sequence of propagating and reflected pressure waves, decaying in time towards a final equilibrium state. Gas rarefaction is shown to have a “damping effect” on equilibration process, with the time required for equilibrium shortening with increasing Kn. Oscillations in hydrodynamic quantities, characterizing gas response in the continuum limit, vanish in collisionless conditions. The effect of having two moving boundaries, compared to only one considered in previous studies of time-periodic systems, is investigated. Comparison between analytical and numerical solutions indicates that the collisionless description predicts the system behavior exceptionally well for all systems of the size of the mean free path and somewhat larger, in cases where boundary actuation acts along times shorter than the ballistic time scale. The continuum-limit solution, however, should be considered with care at early times near the location of acoustic wavefronts, where relatively sharp flow-field variations result in effective increase in the value of local Knudsen number.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call