Abstract

Shape memory alloys exhibit a high damping capacity in the mktensite state. Results obtained from both DMA and cyclic tests under tension-compression load show that the martensite damping capacity in NiTi SMAs is a function of both strain amplitude and annealing temperature. Internal friction due to movements of martensite twin boundaries within both elastic (accommodation) and inelastic (reorientation) ranges as a function of strain ampli- tude seems to be consistent. A critical annealing temperature exists for deformed NiTi SMAs in order to obtain a high martensite damping capacity. Under tension-compression cyclic loading, the martensite damping decreases as the number of cycles increases, and it tends to stabilize with further cycling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.