Abstract

The objective of the present study is to analyze and compare the cutting performance of segmented diamond blades when dry-cutting concrete. A cutting criteria is proposed to characterize the wear of the blades by measuring the variation of the external diameter and the weight loss of the blade. The results exhibit the cutting blade SB-A, which has twice the density of diamonds and large contact area, exhibits less wear even though the material removal rate is higher compared with the other two cutting blades. Additionally, the surface topography of the different blades is evaluated to examine the impact of wear depending on the surface profile and the distribution of the diamonds in the blade’s matrix. Large number of diamonds pull-out are found in blades type SB-C, which additionally shows the worst wear resistant capability. As a conclusion, the cutting efficiency of the blade is found to be related to the density of embedded diamonds and the type of the surface profile of the cutting blade after reaching the stop criteria.

Highlights

  • Diamond blades were designed to cut hard or abrasive materials such as concrete, marble and ceramics

  • Researchers have focused on two topics when studying the performance of diamond blades: the first topic deals with the lifespan and tool wear, while the second topic studies the effectiveness in term of energy consumption under different operational configurations, such as cutting forces, vibrations and influence of lubricants

  • The aim of this work is to evaluate and compare the cutting performance of segmented diamond blades when dry-cutting concrete, where the stop cutting criterion is fixed based on the total surface of concrete to cut

Read more

Summary

Introduction

Diamond blades were designed to cut hard or abrasive materials such as concrete, marble and ceramics. Researchers have focused on two topics when studying the performance of diamond blades: the first topic deals with the lifespan and tool wear, while the second topic studies the effectiveness in term of energy consumption under different operational configurations, such as cutting forces, vibrations and influence of lubricants. Described analytical model to predict wear of different metal alloys during a cutting process. They took into account the relative speed of the abrasive material, the applied force, the type of material and the size of the abrasive grains to describe the abrasive mechanism. Sánchez et al [3]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.