Abstract

It is known that any subharmonic quadrature domain in two dimensions satisfies a natural inner ball condition, in other words there is a specific upper bound on the curvature of the boundary. This result directly applies to free boundaries appearing in obstacle type problems and in Hele-Shaw flow. In the present paper we make partial progress on the corresponding question in higher dimensions. Specifically, we prove the equivalence between several different ways to formulate the inner ball condition, and we compute the Brouwer degree for a geometrically important mapping related to the Schwarz potential of the boundary. The latter gives in particular a new proof in the two dimensional case.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.