Abstract

The study reported here deals with elastohydrodynamic point contacts and it is focused on the influence of contact ellipticity. In five velocity–load reference cases, ellipticity was varied from slender to wide configurations, including the circular contact. For each case, Hertzian pressure, Hertzian area, load, and entrainment velocity were kept constant while the ellipticity was varied by changing the curvature radii. In this context, the maximum central film thickness did not occur for the infinitely wide contact, but for a slender configuration close to the circular case. Moreover, the minimum film thickness reached its optimum for a wide but finite elliptical contact. For low ellipticity ratios, specific film thickness features were obtained. In particular, very high central/minimum film thickness ratios are found. The cause of these behaviors was found in the change of the convergent shape. When the ellipticity was varied, the Poiseuille flows parallel and transverse to the entrainment direction were significantly modified and these modifications were quantitatively analyzed for the different cases. The competition between the Couette and the Poiseuille flows was totally different between the narrow and the wide elliptical contact, and this change was responsible for the film thickness variations with ellipticity. Ellipticity also had an effect on friction as it influenced the maximum pressure which in turn impacts the fluid viscosity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call