Abstract

We develop here a cross-slip model for zirconium based on discrete dislocation dynamics and explicit representation of partial dislocations. It is found that the basal-to-prismatic cross-slip is always energetically favorable. The corresponding stress-free activation enthalpy is ΔHa*∼0.5eV, and the critical nucleation length is close to zero. The Escaig stress on the primary plane is found to be the most effective component in influencing the activation enthalpy. By contrast, prismatic-to-basal cross-slip is activated only if the Schmid stress on the conjugate plane is higher than ∼1GPa, with an activation enthalpy larger than 5 eV. We propose that basal slip of 〈a〉 screw dislocations in Zr is mediated by the formation and subsequent lateral migration of kink pairs formed by double cross-slip. The proposed mechanism is consistent with experimental observations on the temperature-dependence of the critical resolved shear stress (CRSS) and the wavy motion of 〈a〉-basal slip.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.