Abstract

ABSTRACTThe technique of Double Crystal X-Ray Diffractometry (DXD) and ion beam channeling are applied to investigate, as a function of thickness, the average perpendicular strain and crystal quality of CoSi2 layers grown by MBE on 〈111〉Si. The results show that thin layers (from 20 to 30 nm) are partially relaxed but with a strain greater than that expected for a free CoSi2 lattice. For layers thicker than 30nm the magnitude of the CoSi2 strain incrgases to 1.7%, somewhat less than the maximum magnitude strain expected for coherent growth (2.1%). For layers thicker than 50 nm, the perpendicular strain relaxes very slowly, with the strain at 225 nm only 5% less than that at 50nm. It was concluded that a coherent epitaxial layer does not form initially and the relaxation of the strained layers is not consistent with a planar growth mechanism of the CoSi2 epilayers. Therefore the concept of a critical thickness, below which the epilayers are strained and above which the epilayers are relaxed, cannot be applied to our CoSi2/Si system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call