Abstract

The celebrated Kuramoto model captures various synchronization phenomena in biological and man-made dynamical systems of coupled oscillators. It is well known that there exists a critical coupling strength among the oscillators at which a phase transition from incoherency to synchronization occurs. This paper features four contributions. First, we characterize and distinguish the different notions of synchronization used throughout the literature and formally introduce the concept of phase cohesiveness as an analysis tool and performance index for synchronization. Second, we review the vast literature providing necessary, sufficient, implicit, and explicit estimates of the critical coupling strength in the finite- and infinite-dimensional cases and for both first-order and second-order Kuramoto models. Third, we present the first explicit necessary and sufficient condition on the critical coupling strength to achieve synchronization in the finite-dimensional Kuramoto model for an arbitrary distribution of...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call