Abstract
Abstract In this paper, we attempt to apply the modified hardening theory to estimate the creep resistance, which is considered as a key factor for controlling the creep deformation mechanism in cast nickel-base superalloys. It is suggested that, when the applied stress is high enough for the dislocations to cut into the γ′ particles, the creep resistance is almost a constant and independent of applied stress. At low applied stress, creep deformation is mainly controlled by dislocations climb, where the creep resistance has two components of a threshold stress and a friction stress. The model is verified for two cast nickel-base superalloys DZ17G and IN738. The results of detailed calculations are in good agreement with the experimental data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.