Abstract

Dense, near-surface (within ∼10\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\sim 10$$\\end{document} nm) ensembles of nitrogen-vacancy (NV) centres in diamond are moving into prominence as the workhorse of many envisaged applications, from the imaging of fast-fluctuating magnetic signals to enacting nuclear hyperpolarisation. Unlike their bulk counterparts, near-surface ensembles suffer from charge stability issues and reduced formation efficiency due to proximity to the diamond surface. Here we examine the prospects for creating such ensembles by implanting nitrogen-rich type Ib diamond, aiming to exploit the high bulk nitrogen density to combat surface-induced band bending. This approach has previously been successful at creating deeper ensembles, however we find that in the near-surface regime there are fewer benefits over nitrogen implantation into pure diamond substrates. Our results suggest that control over diamond surface termination during annealing is key to successfully creating high-yield near-surface NV ensembles generally and implantation into type Ib diamond may be worth revisiting once that has been accomplished.Graphical

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call