Abstract

Detection of surface-breaking cracks in metals is an important issue in many industries (e.g., transportation, aerospace, nuclear). Commonly, eddy current and ultrasonic techniques are used for this purpose. In recent years, a significant amount of work has also been conducted using microwave methods. Consequently, to better understand the interaction between a microwave probe (i.e., open-ended rectangular waveguide or coax) and a crack, a number of electromagnetic models have been developed. For an open-ended coaxial probe, when a crack coincides with the center conductor region of the probe, all previously developed models significantly underestimate the results obtained from measurements. This paper examines the primary reason for this discrepancy, which turns out to be due to a geometrical perturbation in the probe center conductor geometry and its subsequent interaction with a crack.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.