Abstract
There are only 10 Euclidean forms, that is flat closed three dimensional manifolds: six are orientable $\mathcal{G}_1,\dots,\mathcal{G}_6$ and four are non-orientable $\mathcal{B}_1,\dots,\mathcal{B}_4$. In the present paper we investigate the manifold $\mathcal{G}_6$, also known as Hantzsche-Wendt manifold; this is the unique Euclidean $3$-form with finite first homology group $H_1(\mathcal{G}_6) = \mathbb{Z}^2_4$. The aim of this paper is to describe all types of $n$-fold coverings over $\mathcal{G}_{6}$ and calculate the numbers of non-equivalent coverings of each type. We classify subgroups in the fundamental group $\pi_1(\mathcal{G}_{6})$ up to isomorphism. Given index $n$, we calculate the numbers of subgroups and the numbers of conjugacy classes of subgroups for each isomorphism type and provide the Dirichlet generating series for the above sequences.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.