Abstract

This paper addresses an efficient and robust automatic adaptive local multilevel mesh refinement strategy for unilateral frictional contact problems in elastostatics. The proposed strategy couples the Local Defect Correction multigrid method LDC (Hackbusch, 1984) with the ZZ (Zienkiewicz and Zhu, 1987) a posteriori error estimator. An extension of LDC method to frictional contact problems is introduced. An interesting feature of this extended LDC algorithm is that it still only lies on interpolations of displacement fields. Neither forces conservation nor exchange of contact status is required between the refinement levels. The ZZ a posteriori error estimator is exploited to automatically build the sub-grids of the LDC method. A criterion linked to the relative error in stress is used. The efficiency of the proposed strategy is analyzed on examples derived from nuclear engineering. Practical numerical choices are proposed and justified. The refinement process automatically varies and stops with respect to a given tolerance. Post-treatments show that the sub-grids focus around the contact areas and that the converged LDC solution always respects the prescribed tolerance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.