Abstract
Many electrochemical processes are governed by the transfer of protons to the surface, which can be coupled with electron transfer; this electron transfer is in general non-integer and unknown a priori, but is required to hold the potential constant. In this study, we employ a combination of surface spectroscopic techniques and grand-canonical electronic-structure calculations in order to rigorously understand the thermodynamics of this process. Specifically, we explore the protonation/deprotonation of 4-mercaptobenzoic acid as a function of the applied potential. Using grand-canonical electronic-structure calculations, we directly infer the coupled electron transfer, which we find to be on the order of 0.1 electron per proton; experimentally, we also access this quantity via the potential-dependence of the pKa. We show a striking agreement between the potential-dependence of the measured pKa and that calculated with electronic-structure calculations. We further employ a simple electrostatics-based model to show that this slope can equivalently be interpreted to provide information on the degree of coupled electron transfer or the potential change at the point of the charged species.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.