Abstract

Let q be an odd positive integer and P \in F2[z] be of order q and such that P(0) = 1. We denote by A = A(P) the unique set of positive integers satisfying \sum_{n=0}^\infty p(A, n) z^n \equiv P(z) (mod 2), where p(A,n) is the number of partitions of n with parts in A. In [5], it is proved that if A(P, x) is the counting function of the set A(P) then A(P, x) << x(log x)^{-r/\phi(q)}, where r is the order of 2 modulo q and \phi is Euler's function. In this paper, we improve on the constant c=c(q) for which A(P,x) << x(log x)^{-c}.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call