Abstract

We aim at presenting a new estimate on the cost of observability in small times of the one-dimensional heat equation, which also provides a new proof of observability for the one-dimensional heat equation. Our proof combines several tools. First, it uses a Carleman-type estimate borrowed from our previous work (SIAM J. Control Optim. 56:3 (2018), 1692–1715), in which the weight function is derived from the heat kernel and which is therefore particularly easy. We also use explicit computations in the Fourier domain to compute the high-frequency part of the solution in terms of the observations. Finally, we use the Phragmen–Lindelof principle to estimate the low-frequency part of the solution. This last step is done carefully with precise estimations coming from conformal mappings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.