Abstract
It is shown that the mean of a normal distribution with unknown variance $\sigma^2$ may be estimated to lie within an interval of given fixed width at a prescribed confidence level using a procedure which overcomes ignorance about $\sigma^2$ with no more than a finite number of observations. That is, the expected sample size exceeds the (fixed) sample size one would use if $\sigma^2$ were known by a finite amount, the difference depending on the confidence level $\alpha$ but not depending on the values of the mean $\mu$, the variance $\sigma^2$ and the interval width $2d$. A number of unpublished results on the moments of the sample size are presented. Some do not depend on an assumption of normality.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.