Abstract

We introduce a formalism which allows to treat computer architecture as a formal optimization problem. We apply this to the design of shared memory parallel machines. While present parallel computers of this type only support the programming model of a shared memory but often process simultaneous access by several processors to the shared memory sequentially, theoretical computer science offers solutions for this problem that are provably fast and asymptotically optimal. But the constants in these constructions seemed to be too large to let them be competitive. We modify these constructions under engineering aspects and improve the price/performance ratio by roughly a factor of 6. The resulting machine has surprisingly good price/performance ratio even if compared with distributed memory machines. For almost all access patterns of all processors into the shared memory, access is as fast as the access of only a single processor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.