Abstract

We show that the geometric phase of the gyro-motion of a classical charged particle in a uniform time-dependent magnetic field described by Newton's equation can be derived from a coherent Berry phase for the coherent states of the Schrödinger equation or the Dirac equation. This correspondence is established by constructing coherent states for a particle using the energy eigenstates on the Landau levels and proving that the coherent states can maintain their status of coherent states during the slow varying of the magnetic field. It is discovered that the orbital Berry phases of the eigenstates interfere coherently to produce an observable effect (which we termed “coherent Berry phase”), which is exactly the geometric phase of the classical gyro-motion. This technique works for the particles with and without spin. For particles with spin, on each of the eigenstates that make up the coherent states, the Berry phase consists of two parts that can be identified as those due to the orbital and the spin motion. It is the orbital Berry phases that interfere coherently to produce a coherent Berry phase corresponding to the classical geometric phase of the gyro-motion. The spin Berry phases of the eigenstates, on the other hand, remain to be quantum phase factors for the coherent states and have no classical counterpart.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.