Abstract
The analysis of the morphology of droplets printed through laser-induced forward transfer (LIFT) of liquid films shows that: (i) the droplet volume is linearly related with the energy of the laser pulse that originated it, (ii) the liquid ejection process is activated by an energy density threshold F 0, and (iii) the droplet volume can be correlated with a dimensional parameter of the laser beam through an oversimple model that states that the amount of printed liquid equals the liquid contained in the cylindrical portion of an irradiated film whose base corresponds to the cross-sectional area of the beam with energy density higher than F 0. Although these issues seem to describe correctly the LIFT process, some problematic instances arise from them. Thus, the linear relation between droplet volume and laser pulse energy seems to be inconsistent with the existence of the threshold F 0. On the other hand, the compatibility between the model and the aforementioned linear relation requires to be explained. Finally, the model is based on the idea that transfer takes place in a way analogous to the LIFT of solid films, but time-resolved imaging studies have demonstrated that liquid ejection follows a dynamics which seems quite unsuited with that idea. In this work previous results are re-analyzed and new experiments are performed in an attempt to clarify these questions. It is then shown that the inconsistencies pointed out are only apparent, and that the validity of the model is limited to irradiation conditions where the beam dimensions are significantly larger than the thickness of the liquid film. Furthermore, an explanation is provided for the dependence of the success and failure of the model on those irradiation conditions in terms of the diverse liquid ejection dynamics taking place.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.