Abstract

Emerging multiprocessor architectures such as chip multiprocessors, embedded architectures, and massively parallel architectures, demand faster, more efficient, and more scalable cache coherence schemes. In devising more cost-efficient schemes, formal insights into a system model is deemed useful. We, in this paper, build formalisms for execution in cache based Distributed shared-memory multiprocessors (DSM) obeying Release Consistency model, and derive conditions for cache coherence. A cost-efficient cache coherence scheme without directories is designed. Our approach relies on processor directed coherence actions, which are early in nature. The scheme exploits sharing information provided by a programmer-centric framework. Per-processor coherence buffers (CB) are employed to impose coherence on live shared variables between consecutive release points in the execution. Simulation of 8 entry 4-way associative CB based system achieves a speedup of 1.07-4.31 over full-map 3-hop directory scheme for six of the SPLASH-2 benchmarks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.