Abstract

ABSTRACT Low-metallicity very massive stars with an initial mass of ∼140–$260\, \mathrm{M}_\odot$ are expected to end their lives as pair-instability supernovae (PISNe). The abundance pattern resulting from a PISN differs drastically from regular core-collapse supernova (CCSN) models and is expected to be seen in very metal-poor (VMP) stars of [Fe/H] ≲ −2. Despite the routine discovery of many VMP stars, the unique abundance pattern expected from PISNe has not been unambiguously detected. The recently discovered VMP star LAMOST J1010 + 2358, however, shows a peculiar abundance pattern that is remarkably well fit by a PISN, indicating the potential first discovery of a bonafide star born from gas polluted by a PISN. In this paper, we study the detailed nucleosynthesis in a large set of models of CCSN of Pop III and Pop II star of metallicity [Fe/H] = −3 with masses ranging from 12 to $30\, \mathrm{M}_\odot$. We find that the observed abundance pattern in LAMOST J1010 + 2358 can be fit at least equally well by CCSN models of ∼12–$14\, \mathrm{M}_\odot$ that undergo negligible fallback following the explosion. The best-fitting CCSN models provide a fit that is even marginally better than the best-fitting PISN model. We conclude the measured abundance pattern in LAMOST J1010 + 2358 could have originated from a CCSN and therefore cannot be unambiguously identified with a PISN given the set of elements measured in it to date. We identify key elements that need to be measured in future detections in stars like LAMOST J1010 + 2358 that can differentiate between CCSN and PISN origin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call