Abstract

We introduce directed acyclic graph (DAG) games, a generalization of standard tree games, to study cost sharing on networks. This structure has not been previously analyzed from a cooperative game theoretic perspective. Every monotonic and subadditive cost game--including monotonic minimum cost spanning tree games--can be modeled as a DAG-game. We provide an efficiently verifiable condition satisfied by a large class of directed acyclic graphs that is sufficient for the balancedness of the associated DAG-game. We introduce a network canonization process and prove various structural results for the core of canonized DAG-games. In particular, we characterize classes of coalitions that have a constant payoff in the core. In addition, we identify a subset of the coalitions that is sufficient to determine the core. This result also guarantees that the nucleolus can be found in polynomial time for a large class of DAG-games.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call