Abstract

AbstractBulk radical copolymerization of methyl acrylate (MeA, M1) with styrene (St, M2) in presence and absence of ZnCl2 as complexing agent was studied. 1H‐NMR spectra were used to establish copolymer composition and sequence distribution. The methoxy group signal was observed to be split due to pentads, but the analysis of sequence distribution is possible only at triad level. Both composition and sequence distribution data confirmed that bulk radical copolymerization respects quite well the terminal addition model; the values of r1 = 0.14 ± 0.02 (from composition data) and r1 = 0.25 ± 0.03 (from sequence distribution data) and r2 = 0.83 ± 0.10 (from composition data) were found. The presence of ZnCl2 increases the probability of alternating addition, e.g., for [ZnCl2]/[MeA] = 0.2, r1 = 0.03 ± 0.02 and r2 = 0.17 ± 0.03. The radical copolymer obtained in bulk in the absence of ZnCl2 presents a coisotactic configuration with σ = 0.75 ± 0.03, but the presence of the complexing agent reduces the probability of coisotactic addition, e.g., for [ZnCl2]/[MeA] = 0.2, σ = 0.52 ± 0.03.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call