Abstract

The nature of the cooperativity effect of hydrogen bonds in Watson and Crick and wobble base pairs formed with thymine, uracil, and its 5-halogenated derivatives (5-fluoro, -chloro, and -bromouracil) has been studied through SERS and by using chemometric tools to process data and extract relevant information. Remarkable differences between the two kinds of pairs were clearly observed, and the behavior correlated to the withdrawing character of different substituents at the 5-position of uracil was verified. Multivariate analyses have also unveiled information about the pair's stability, and a stronger cooperativity effect seems to rule the Watson and Crick pairs when compared to wobble pairs. Defined patterns in the behavior of Watson and Crick pairs allowed the design of an indirect methodology for quantifying 5-bromouracil using a partial least squares (PLS) method with variable selection. Limit of detection (LOD) values of 0.037 and 0.112 mmol L-1 in the absence and presence of structurally similar interferences were reached, while its direct surface-enhanced Raman spectroscopy (SERS) quantification is only possible at ∼45 mmol L-1.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.