Abstract

For the 4-body problem there is the following conjecture: Given arbitrary positive masses, the planar 4-body problem has a unique convex central configuration for each ordering of the masses on its convex hull. Until now this conjecture has remained open. Our aim is to prove that this conjecture cannot be extended to the (ℓ + 2)-body problem with ℓ ⩾ 3. In particular, we prove that the symmetric (2n + 1)-body problem with masses m1 = … = m2n−1 = 1 and m2n = m2n+1 = m sufficiently small has at least two classes of convex central configuration when n = 2, five when n = 3, and four when n = 4. We conjecture that the (2n + 1)-body problem has at least n classes of convex central configurations for n > 4 and we give some numerical evidence that the conjecture can be true. We also prove that the symmetric (2n + 2)-body problem with masses m1 = … = m2n = 1 and m2n+1 = m2n+2 = m sufficiently small has at least three classes of convex central configuration when n = 3, two when n = 4, and three when n = 5. We also conjecture that the (2n + 2)-body problem has at least [(n +1)/2] classes of convex central configurations for n > 5 and we give some numerical evidences that the conjecture can be true.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.