Abstract
From the dynamical equation of barotropic relaxing media beneath pressure perturbations, and using the reductive perturbative analysis, we investigate the soliton structure of a (1+1)-dimensional nonlinear partial differential evolution (NLPDE) equation δy(δ + uδy + (u2/2) δy)u + αuy + u = 0, describing high-frequency regime of perturbations. Thus, by means of Hirota's bilinearization method, three typical solutions depending strongly upon a characteristic dissipation parameter are unearthed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.