Abstract

Nonlinear state-space models driven by differential equations have been widely used in science. Their statistical inference generally requires computing the mean and covariance matrix of some nonlinear function of the state variables, which can be done in several ways. For example, such computations may be approximately done by Monte Carlo, which is rather computationally expensive. Linear approximation by the first-order Taylor expansion is a fast alternative. However, the approximation error becomes non-negligible with strongly nonlinear functions. Unscented transformation was proposed to overcome these difficulties, but it lacks theoretical justification. In this paper, we derive some theoretical properties of the unscented transformation and contrast it with the method of linear approximation. Particularly, we derive the convergence rate of the unscented transformation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.