Abstract
Sufficient conditions have been given for the convergence in norm and a.e. of the ergodic Hilbert transform (Gaposhkin in Theory Probab Appl 41:247–264, 1996; Cohen and Lin in Characteristic functions, scattering functions and transfer functions, pp 77–98, Birkhäuser, Basel, 2009; Cuny in Ergod Theory Dyn Syst 29:1781–1788, 2009). Here we apply these conditions to the rotated ergodic Hilbert transform $${\sum_{n=1}^\infty \frac{\lambda^n}{n} T^nf}$$ , where λ is a complex number of modulus 1. When T is a contraction in a Hilbert space, we show that the logarithmic Hausdorff dimension of the set of λ’s for which this series does not converge is at most 2 and give examples where this bound is attained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.