Abstract

A randomized block Kaczmarz method and a randomized extended block Kaczmarz method are proposed for solving the matrix equation AXB=C, where the matrices A and B may be full-rank or rank-deficient. These methods are iterative methods without matrix multiplication, and are especially suitable for solving large-scale matrix equations. It is theoretically proved that these methods converge to the solution or least-square solution of the matrix equation. The numerical results show that these methods are more efficient than the existing algorithms for high-dimensional matrix equations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.