Abstract
Physics informed neural networks (PINNs) are deep learning based techniques for solving partial differential equations (PDEs) encounted in computational science and engineering. Guided by data and physical laws, PINNs find a neural network that approximates the solution to a system of PDEs. Such a neural network is obtained by minimizing a loss function in which any prior knowledge of PDEs and data are encoded. Despite its remarkable empirical success in one, two or three dimensional problems, there is little theoretical justification for PINNs. As the number of data grows, PINNs generate a sequence of minimizers which correspond to a sequence of neural networks. We want to answer the question: Does the sequence of minimizers converge to the solution to the PDE? We consider two classes of PDEs: linear second-order elliptic and parabolic. By adapting the Schauder approach and the maximum principle, we show that the sequence of minimizers strongly converges to the PDE solution in $C^0$. Furthermore, we show that if each minimizer satisfies the initial/boundary conditions, the convergence mode becomes $H^1$. Computational examples are provided to illustrate our theoretical findings. To the best of our knowledge, this is the first theoretical work that shows the consistency of PINNs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.