Abstract
Nonnegative matrix factorization (NMF) is useful to find basis information of nonnegative data. Currently, multiplicative updates are a simple and popular way to find the factorization. However, for the common NMF approach of minimizing the Euclidean distance between approximate and true values, no proof has shown that multiplicative updates converge to a stationary point of the NMF optimization problem. Stationarity is important as it is a necessary condition of a local minimum. This paper discusses the difficulty of proving the convergence. We propose slight modifications of existing updates and prove their convergence. Techniques invented in this paper may be applied to prove the convergence for other bound-constrained optimization problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.