Abstract

We present a unified treatment of explicit in time, two-level, second-order resolution (SOR), total-variation diminishing (TVD), approximations to scalar conservation laws. The schemes are assumed only to have conservation form and incremental form. We introduce a modified flux and a viscosity coefficient and obtain results in terms of the latter. The existence of a cell entropy inequality is discussed and such an equality for all entropies is shown to imply that the scheme is an E scheme on monotone (actually more general) data, hence at most only first-order accurate in general. Convergence for TVD-SOR schemes approximating convex or concave conservation laws is shown by enforcing a single discrete entropy inequality.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call