Abstract

This paper presents a finite time convergence analysis for a decentralized stochastic approximation (SA) scheme. The scheme generalizes several algorithms for decentralized machine learning and multi-agent reinforcement learning. Our proof technique involves separating the iterates into their respective consensual parts and consensus error. The consensus error is bounded in terms of the stationarity of the consensual part, while the updates of the consensual part can be analyzed as a perturbed SA scheme. Under the Markovian noise and time varying communication graph assumptions, the decentralized SA scheme has an expected convergence rate of O(log T/√T), where T is the iteration number, in terms of squared norms of gradient for nonlinear SA with smooth but non-convex cost function. This rate is comparable to the best known performances of SA in a centralized setting with a nonconvex potential function.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.