Abstract

In this paper we analyze convergence of basic iterative Jacobi and Gauss–Seidel type methods for solving linear systems which result from finite element or finite volume discretization of convection–diffusion equations on unstructured meshes. In general the resulting stiffness matrices are neither M-matrices nor satisfy a diagonal dominance criterion. We introduce two newmatrix classes and analyse the convergence of the Jacobi and Gauss–Seidel methods for matrices from these classes. A new convergence result for the Jacobi method is proved and negative results for the Gauss–Seidel method are obtained. For a few well-known discretization methods it is shown that the resulting stiffness matrices fall into the new matrix classes. Copyright © 1999 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.