Abstract
This article is a continuation of the work [M. Feistauer et al., Num Methods PDEs 13 (1997), 163–190] devoted to the convergence analysis of an efficient numerical method for the solution of an initial-boundary value problem for a scalar nonlinear conservation law equation with a diffusion term. Nonlinear convective terms are approximated with the aid of a monotone finite volume scheme considered over the finite volume mesh dual to a triangular grid, whereas the diffusion term is discretized by piecewise linear conforming triangular elements. In the previous article [1] the convergence of a semi-implicit scheme was established. Here we are concerned with the analysis of fully explicit schemes. Under the assumption that the triangulations are of weakly acute type, with the aid of the discrete maximum principle, a priori estimates and some compactness arguments based on the use of the Fourier transform with respect to time, the convergence of the approximate solutions to the exact solution is proved, provided that the mesh size tends to zero. © 1999 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 15: 215–235, 1999
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Numerical Methods for Partial Differential Equations
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.