Abstract

Single-atom (SA) catalysis is a novel frontline in the catalysis field due to the often drastically enhanced specific activity and selectivity of many catalytic reactions. Here, an atomic-scale defect engineering approach to form and control traps for platinum SA sites as co-catalyst for photocatalytic H2 generation is described. Thin sputtered TiO2 layers are used as a model photocatalyst, and compared to the more frequently used (001) anatase sheets. To form stable SA platinum, the TiO2 layers are reduced in Ar/H2 under different conditions (leading to different but defined Ti3+ -Ov surface defects), followed by immersion in a dilute hexachloroplatinic acid solution. HAADF-STEM results show that only on the thin-film substrate can the density of SA sites be successfully controlled by the degree of reduction by annealing. An optimized SA-Pt decoration can enhance the normalized photocatalytic activity of a TiO2 sputtered sample by 150 times in comparison to a conventional platinum-nanoparticle-decorated TiO2 surface. HAADF-STEM, XPS, and EPR investigation jointly confirm the atomic nature of the decorated Pt on TiO2 . Importantly, the density of the relevant surface exposed defect centers-thus the density of Pt-SA sites, which play the key role in photocatalytic activity-can be precisely optimized.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.