Abstract

We consider the motion of a two-link flexible arm with nonuniform cross section. We obtain the equations of motion by using the extended Hamilton’s principle. These equations consist of coupled partial differential equations and (nonlinear) ordinary differential equations with appropriate boundary conditions. Our control problem is to achieve the given desired link angles and suppress the link vibrations. To solve this problem, we propose a novel control scheme which consists of a dominant control law together with a parallel controller. We show that with the proposed controller, the control objectives are satisfied. Our stability analysis is based on the Lyapunov approach and LaSalle’s invariance principle extended to infinite-dimensional systems. We also present some simulation results, which indicate that large parameter uncertainties such as tip and hub mass changes are also handled effectively by the proposed controller.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.