Abstract

[EN] The control of the acoustical properties of the sonic crystals (SC) needs the study of both the distribution of the scatterers in the structure and the intrinsic acoustical properties of the scatterers. In this work an exhaustive analysis of the distribution of the scatterers as well as the improvement of the acoustical properties of the SC made of scatterers with absorbent and/or resonant properties is presented. Both procedures, working together or independently, provide real possibilities to control the propagation of acoustic waves through SC. From the theoretical point of view, the wave propagation through periodic and quasiperiodic structures has been analysed by means of the multiple scattering theory, the plane wave expansion and the finite elements method. A novel extension of the plane wave expansion allowing the complex relation dispersion for SC is presented in this work. This technique complements the provided information using the classical methods and it allows us to analyse the evanescent behaviour of the modes inside of the band gaps as well as the evanescent behaviour of localized modes around the point defects in SC. The necessity of accurate measurements of the acoustical properties of the SC has motivated the development of a novel three-dimensional acquisition system that synchronises the motion of the receiver and acquisition of the temporal signals. A good agreement between the theoretical and experimental data is shown in this work. The joint work between the optimized structures of scatterers and the intrinsic properties of the scatterers themselves is applied to generate devices that present wide ranges of attenuated frequencies. These systems are presented as an alternative to the classic acoustic barrier where the propagation of waves through SC can be controlled. The results help to correctly understand the behaviour of SC for the localization of sound and for the design of both wave guides and acoustic filters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.