Abstract

The storage of hydrogen in different carbon nanostructures has been investigated using classical Monte–Carlo simulations techniques. Very low hydrogen uptakes (⩽1% wt) have been calculated for single-walled and double-walled carbon nanotubes, as well as for graphite nanofibers at 293 K and 10 MPa. The amount of hydrogen uptake strongly depends on the porosity within the nanostructure network where optimal arrangements give rise to the formation of a well-defined two-dimensional adsorbed hydrogen layer. The presence of metallic impurities within single-walled nanotube bundles was modeled by disseminating atomic particles, characterized by a highly attractive potential, throughout the nanotube network. It has been found that the presence of metallic particles significantly enhances the hydrogen uptake, but not to a point where this could be considered a promising storage solution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.